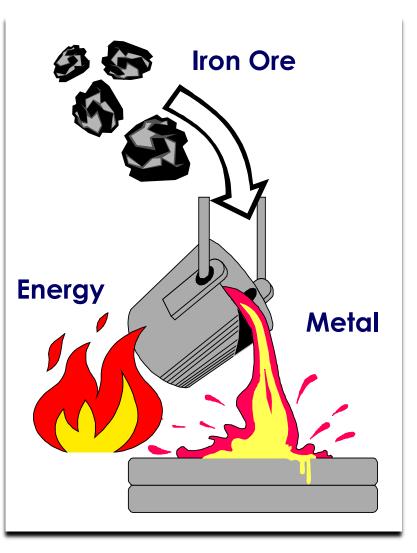
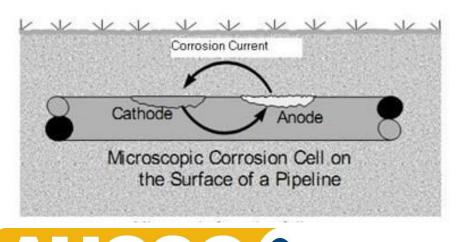
Heat-Shrinkable Sleeve Technology Bob Buchanan Seal For Life Ind.

From corrosion coating basics to installed system inspection

Pipelines



Understanding Corrosion


- Steel is formed from Iron Ore and Energy
- With energy, steel may be returned to being iron ore corrosion

Corrosion Basics

- Anode (pipe or other metallic structure)
- Cathode (pipe)
- Electrolyte (soil)
- External Circuit

- All 4 components creates a potential difference between the Anode and Cathode
- Removing any 1 of the components from the cell halts the corrosion process
- Break the circuit with a good coating as example

Underground Pipeline Coatings

- 1st line of defense against corrosion
- Must be properly specified based on constructability and pipeline operation
- Must be properly applied big part of that is applicator training and final inspection

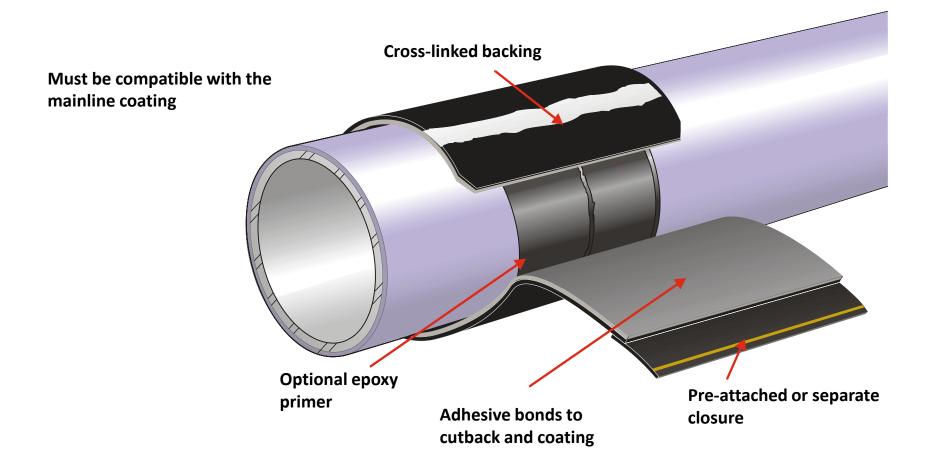
What's Important

- Specification / Product Selection
- Surface Preparation
- Proper Application
- Inspection & Testing

Prevent corrosion

Coatings need to have

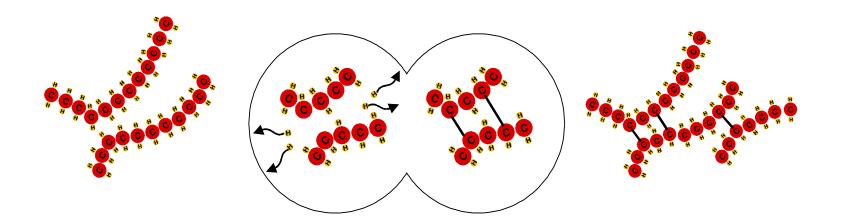
- high electrical resistance
- low permeability to hydrogen and oxygen
- mechanical strength
- chemical stability



Heat-Shrinkable Sleeve System

- Sleeves consist of a backing and adhesive
- The backing needs to be cross-linked in order to be heat shrinkable
- The adhesive has several functions:
 - corrosion protection, shear resistance, long term adhesion to the steel, bond to the coating...
- Design of the backing and adhesive dictates performance at operating temperature

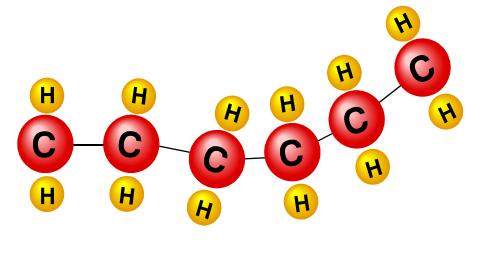
Heat-Shrinkable Sleeve System



Irradiation Cross-linking

- High energy electrons are used to strike the molecules at the C-H bond
- The hydrogen atom is set free leaving the parent carbon atom as a "free radical"
- At adjacent sites, the free radicals use their energy to form a chemical bond
- This bond is called a cross-link

Polyolefin Cross-linking



Polyolefin (before) Irradiation processing

Cross-linked Polyolefin (after)

Properties of Cross-linked Backings

- Imparts Elastic Memory
- Increases Tensile Strength
- Increases Impact Resistance
- Increases Abrasion Resistance
- Increases Insulation Value

Adhesives

Adhesive Functions

- Primary corrosion protection in 2-layer systems
- Develop a physical anchor to the substrate
- Provide shear force resistance
- Minimize cathodic disbondment
- Bond the sleeve to the mainline coating

Adhesive Choice Considerations

- Surface prep and pre-heat requirements
- Adhesion to cutback and adjacent coating
- Cathodic disbondment resistance requirements
- Soil stress resistance due to pipe movement and vertical soil shear
- Environmental conditions during construction
- Properties at operating temperature through service life

Adhesive Technologies

- Mastic Adhesives
 - Low pre-heat requirements
 - Forgiving on surface prep
 - Excellent water resistance
 - Excellent CD resistance

- Hot-Melt Adhesives
 - High shear resistance
 - Resistant to high
 ambient temperaures
 - Higher pipeline operating temperature
 - 3-Layer coating compatible

Selecting the sleeve

- Pipe operating temperature
- Pipe coating type—
- Cutback distance –
- Outside pipe diameter.
- Adverse soil conditions[\]
- Pipe laying method
- Climate conditions
- Recommended pipe preparation
- Mechanical resistance class

Wraparound 2- or 3-Layer Sleeve

- Installation directly on cleaned and dried pipe surface
- Compatible with standard mill-applied coatings
- Heat-shrinkable backing - Hot melt/mastic layer
 - Primer if used

 Epoxy primer for 3-layer only

Coating of Fittings & Bends

Heat Shrink Tape

- Highly flexible, hand installed tape
- Minimal inventory

Tubular Heat Shrink Sleeves

Two-layer coating for pipes with ambient operating temperature up to 30°C (86°F)

- Only handbrush or wirebrush required
- No closure patch, easy to install
- High impact strength and penetration resistance
- Thermal indicator (TPS)

Shrink Sleeves for Casing Ends and Flanges

- Fiberglass reinforced: mechanical strength, high impact strength, high penetration resistance
- Convenient wraparound design
- High shrink ratio (65%)

Special Applications

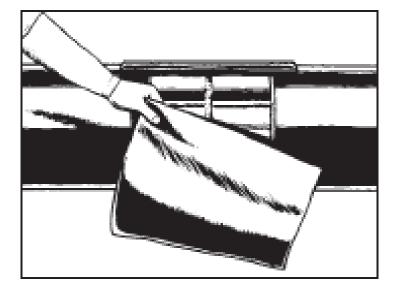
Three-layer coating for horizontal or directional drilling

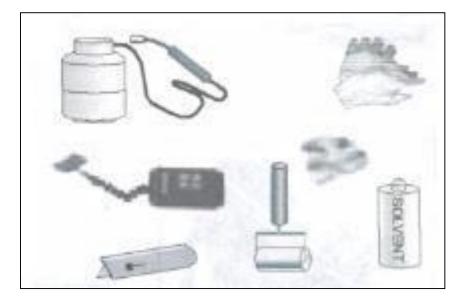
- Extremely high shear and peel strength
- Fiber-reinforced sleeve, excellent abrasion resistance
- No 'curing time' just cool and use immediately
- Superior cathodic disbondment
- Simple installation without special tools

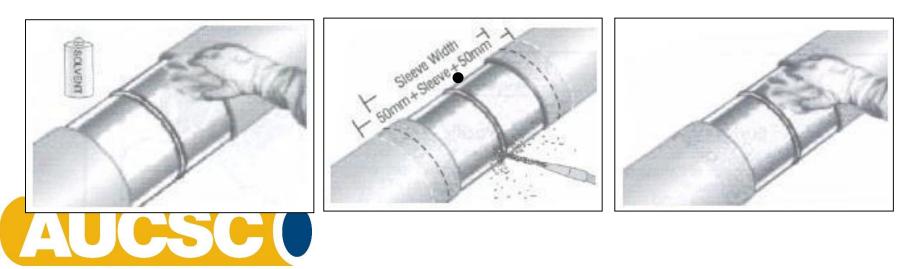
Sleeve System

Required Properties & Characteristics

- Resistance to impact, abrasion, penetration
- Must be flexible
- Good adhesion to the substrate
- Resistance to environmental conditions
- Resistance to cathodic disbondment
- Remain functional under operating conditions


What is important to install?


- Suitable surface preparation
- Use of the proper tools
- Primer application (if used)
- Achieve the correct pre-heat
- Sleeve centered on the cutback
- Correct overlap to the coating
- Closure properly installed
- Correct procedure for shrinking
- Visual Inspection
- Field Peel Test
- Holiday Detection


Material and Tools for Proper Installation

Surface Preparation

- Chamfer 3LPE edges to minimum 45 degrees.
- No Chamfer required for FBE
- Clean and dry surface prepared to minimum St3 ISO 8501:1
- Sand or Grit blasting possible
- Coating abraded at the sleeve overlap area with sand paper or grinderto achieve proper bonding of the sleeve

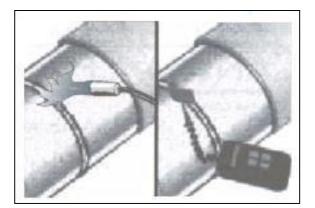
Surface Preparation

- The primary objective of surface preparation is to provide maximum coating adhesion
- The actual mechanism of surface preparation is threefold:
 - Remove any loose material from the surface
 - Increase the surface area
 - Impart an anchor pattern

Surface Preparation Standards

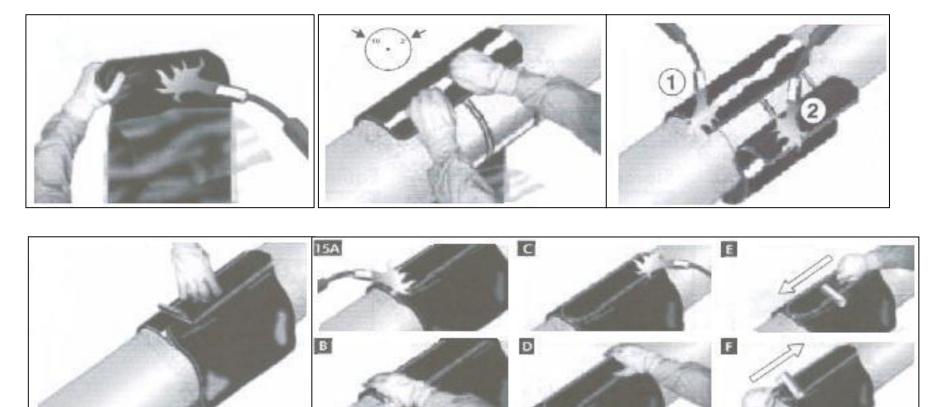
Description	SIS	SSPC	NACE
White Metal	Sa3	SP5	1
Near White Metal	Sa2.5	SP10	2
Medium Blast	Sa2	SP6	3
Light Blast	Sa1	SP7	4
Power Wire Brush	ST3	SP3	-
Hand Wire Brush	ST2	SP2	-

Abrasive Blast Cleaning

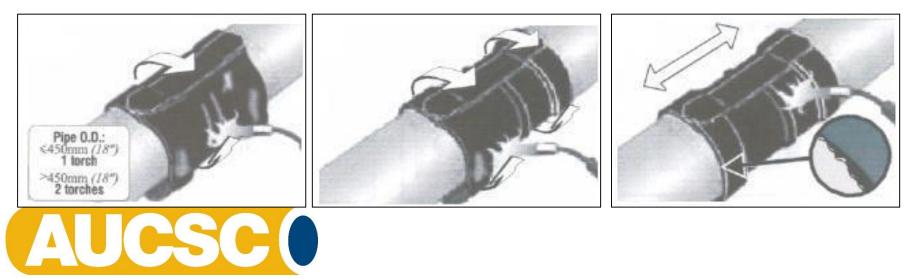

Cleaning Blasting & Abrasion

Pre-heating

- Mastics 150°F (65°C)
- Hot Melts 200°F (90°C)
- OD pipe < 12", one torch required
- OD >12", two torches recommended
- Verify temperature with contact proble thermometer



Surface Pre-Heating

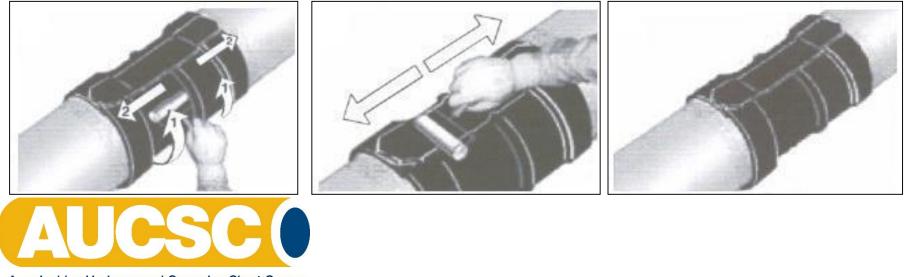

- Pre-heating with induction coils or propane torches
- Removes moisture from steel substrate (prior to surface prep)
- Pre-heats substrate to a specified temperature to melt and "Wet-Out" adhesives
- Oxidizes coating surface to aid bonding

Centralize the Sleeve and Install the Closure

Shrink the Sleeve / Visual Inspection

- Start shrinking at the center and complete to the edges
- Both installers shall shrink to the same side, then to the other side
- Check if the adhesive oozed to both edges on the entire circumference

Heat-Shrinkable Sleeve Installation



Heat-Shrink Sleeve Field Installation

Finishing the Installation

 Roll sleeve surface and the overlapping sleeve/sleeve region where a air channel can be formed in order to remove entrapped air

Rolling the sleeve

Post installation inspection Holiday Detection & Adhesion Testing

Contact Bob Buchanan

bob.buchanan@sealforlife.com

416 577 0136

